Measuring the Impact of Using Different Tools on Classification System Results

Author:

Khalaf Zainab A.,Jawad Zainab M.

Abstract

Abstract A huge amount of textual data is available on the web. These data need to be classified under labels or classes to make the search more efficient and easier. Achieved by using automatic classification is used for this task. Many factors impact on the performance of the classifier system, such as the amount of using dataset, the data dispersion degree, preprocessing tools, feature extraction methods, terms weighting, and data reduction. So, researchers constantly compete to build a robust classifier with good performance. This study focuses on the effect of using different tools in preprocessing and term weighting stages. The experimental results applied on two different languages (Arabic and English languages). Also, the experimental results were compared with the recent related works.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference30 articles.

1. Improving Text Classification With Word Embedding;Ge,2018

2. Survey On Supervised Machine Learning Techniques For Automatic Text Classification;Ammar;Springer Artificial Intelligence Review,2019

3. Composite Feature Extraction And Selection For Text Classification;Chuan;IEEE Access,2019

4. Improved inverse gravity moment term weighting for text classification;Turgut;Elsevier, Expert Systems with Applications,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3