Synthesis and characterization of PVA-Graphene-Ag nanocomposite by using laser ablation technique

Author:

Mohammed Musaab Khudhur,Al-Dahash Ghaleb,Al-Nafiey Amer

Abstract

Abstract The PVA-G-Ag nanocomposite have been synthesized effectively by pulsed laser ablation liquid (PLAL) as a considered to be environmentally friendly and free of residues from chemical reactions. The high excellence silver plate (99.99%) and graphite plate (99.99%) was immersed in the polyvinyl alcohol (PVA) solution and irradiated with the Nd-YAG laser at wavelength 1064 nm, power 160 mJ for the silver plate and 80mJ for graphite plate, reiteration rate 6 Hz, 10 ns pulse width and 300 pules for graphite plate and 700 pulse for silver plate. The pure of PVA, PVA-Graphene and PVA-Graphene-Ag nanocomposite were investigated using UV-VIS spectroscopy, FTIR and SEM. The absorption spectra of PVA-Graphene-Ag nanocomposite show the presence of two peaks one 0.4 at 272 and second 0.47 at 403 nm. The optical energy gap (Eg) decreased from 5eV of a pure PVA to 4.6eV of a PVA-G-Ag for indirect allowed transition and therefore, decreased from 4.4eV of a pure PVA to 4.1eV of a PVA-G-Ag for indirect forbidden transition. The transmittance and absorption coefficient have been determined. The SEM images confirmed that homogenous composite without aggregation of the components. The average size of nanoparticles of GNPs and AgNPs for PVA-G and PVA-G-Ag nanocomposite was 130 and 115 nm respectively. The FTIR has demonstrated that the connection between the graphene, silver and polymer network was enough to have stable nanocomposite. This investigation demonstrates that the pulse laser ablation decent instrument to decorated metals on the graphene with the presence of the polymer.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference35 articles.

1. Nobel lecture: Graphene: Materials in the flatland;Novoselov;Reviews of Modern physics,2011

2. Nobel Lecture: Random walk to graphene;Geim;Reviews of Modern Physics,2011

3. Graphene nanoplatelets in epoxy system: dispersion, reaggregation, and mechanical properties of nanocomposites;Wei;J. of Nanomaterials,2015

4. Band structure of graphite;Slonczewski;Physical Review,1958

5. Graphene and graphene oxide: synthesis, properties, and applications;Zhu;Advanced materials,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3