Next Generation of High-Speed Optical Communications Networks Using OFDM Technology

Author:

Jaber Atta Takhum,Ahmed Soudad S.,Kadhim Shehab Ahmed

Abstract

Abstract The usage of data transmission through Optical Fiber is highly preferred in every area where transferring of data is needed from one end to another. Moreover, nowadays the infrastructure of telecommunications is in good shape and size to handle data transmission through its optical fibers which have low attenuation and higher bandwidth. The seeking of data rate higher than 100Gbit/second and above has been increased to build it in urban and rural areas, and for long and short hauls. Consequently, the current goal is to propel this transmission system into the next appropriated level to avoid any decline of the optical infrastructure than its current capacity. To fulfill increased demand for bandwidth in Broadband services one of the most trusted technology is the Orthogonal Frequency Division Multiplexing (OFDM). The Orthogonal Frequency Division Multiplexing has been placed on-demand in optical communication, it is used in Long haul transmission Format in Direct and Coherent detection. OFDM has many features and abilities can boost the optical fiber performance by eliminating several limits of conventional Optical Fiber communication. OFDMA has polarization mode dispersion (PMD) and chromatic dispersion (CD) which are considered a big addition to the current systems. In addition to that, the easy correlation of the coherent optical OFDM with Wavelength Division Multiplexing (WDM) systems can further advantages in the transmission system such as super bandwidth, high spectral efficiency, and extra data rates. Furthermore, the WDM systems can improve data rate and capacity by using multiple wavelengths over a single fiber. This work aims to bring implementation and to perform a deep-dive study of higher data rates using Direct and Coherent Optical OFDM for long path transmissions. This research starts with a unique user and then extends to the add the OFDM - WDM system to get a data rate of 100 Gbps. Regarding the software portion, the Optisystem simulation tool was used for the design and implementation of the system. Moreover, the modulation type used is QAM for the OFDM signal, and I/Q modulation is deployed, while Coherent and Direct detection is used at the receiving portion. Q Factor, the bit error rate and eye diagram were discussed to study the System’s Performance and Quality. This work found CD-OOFDM is the best system for next generation of optical. The work compared WDM CD-OOFDM with SMF-DCF to DD and CD-OOFDM. In addition to that, it compared WDM CD-OOFDM with SMF-DCF to CD-OODFM with SMF. Therefore, the results showed that WDM CD-OOFDM with SMF-DCF achieved 25 Gbps for four channels of the WDM system at 120km channel, where the carrier frequencies were from 193.05THz to 193.2THz.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. Design and Optimization of Optical Fiber Based PSK Demodulators for High-Bit-Rate Optical Networks;Chen,2015

2. Design and simulation of 1.28 Tbps dense wavelength division multiplex system suitable for long haul backbone;Akinwumi,2018

3. a Nonlinear Electrical compensation for the Coherent Optical OFDM System, Ms. Thesis, Miami University;Pan;Journal of Light wave Technology,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3