Intelligent Chatbot Adapted from Question and Answer System Using RNN-LSTM Model

Author:

Anki P,Bustamam A,Al-Ash H S,Sarwinda D

Abstract

Abstract In modern times, the chatbot is implemented to store data collected through a question and answer system, which can be applied in the Python program. The data to be used in this program is the Cornell Movie Dialog Corpus which is a dataset containing a corpus which contains a large collection of metadata-rich fictional conversations extracted from film scripts. The application of chatbot in the Python program can use various models, the one specifically used in this program is the LSTM. The output results from the chatbot program with the application of the LSTM model are in the form of accuracy, as well as a data set that matches the information that the user enters in the chatbot dialog box input. The choice of models that can be applied is based on data that can affect program performance, with the aim of the program which can determine the high or low level of accuracy that will be generated from the results obtained through a program, which can be a major factor in determining the selected model. Based on the application of the LSTM model into the chatbot, it can be concluded that with all program test results consisting of a variety of different parameter pairs, it is stated that Parameter Pair 1 (size_layer 512, num_layers 2, embedded_size 256, learning_rate 0.001, batch_size 32, epoch 20) from File 3 is the LSTM Chatbot with the avg accuracy value of 0.994869 which uses the LSTM model is the best parameter pair.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dialog generation for Arabic chatbot;International Journal of Information Technology;2023-10-19

2. Exploring the Future Development of Artificial Intelligence (AI) Applications in Chatbots: A Bibliometric Analysis;International Journal of Social Robotics;2023-04-04

3. Conversational chat system using attention mechanism for COVID-19 inquiries;International Journal of Intelligent Networks;2023

4. A Self-Learning French Language Learner Assistant Chatbot Leveraging Deep Learning;2022 13th International Conference on Information and Communication Technology Convergence (ICTC);2022-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3