Investigation of Inter-Satellite OWC Incorporating Dense WDM and Polarization Interleaving (PI)

Author:

Chawla Sachin

Abstract

Abstract Inter-satellite communication based on lasers (LIC) is a possible choice for future satellite networks because to ultra-high capacity and speed systems that may be achieved using compact, light-weight, and low-power optical equipment. The performance of a 64 × 40 GB/s optical wireless system with polarisation diversity for dense WDM is investigated in this research paper. Using a DWDM system with a channel spacing of 50 GHz, a high-speed system is achieved to meet the broad bandwidth needs of data services in satellites. A polarisation diversity approach is implemented in the system to decrease polarisation crosstalk and nonlinearities among nearby WDM channels. Furthermore, a comparison of the polarisation interleaved and traditional DWDM-OWC systems is performed. In addition, it was discovered that a system with varying states of polarisation across neighbouring channels performs better in terms of Q-factor and BER than a traditional system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3