Load Balancing using Fixed Geometric Arrangements of Fixed and Mobile Small Cells in Mili-Meter Network

Author:

Verma Shekhar,Pandey Vaibhav,Khurana Preeti

Abstract

Abstract The upcoming generation of cellular networks is going to make extensive use of mmWave for communication. Hence, there will be a need for small cells to counter the loss incurred due to the more energy dissipation of mmWave. Small cells contain transmitters and receivers and hence there will be the need to balance the load efficiently so that no one is overwhelmed with functions to perform while others are relatively idle. In this paper, the performance of the user association algorithm is analysed when it is subjected to different scenarios like micro-urban, macro urban, suburban and rural. these scenarios are subjected to different frequency bands of mmWave and are compared for the values of the load balancing index. The load balancing algorithm is subjected to different small cell deployment techniques and the comparison is made for best deployment strategy among Quadrature based Approach (QBA) and Random deployment. Simulation results show that the sub-urban scenario has the maximum load-balancing index. On comparing QBA and random deployment approach QBA has a higher load balancing index in the suburban and rural scenarios and random deployment has a higher load balancing index in Indoor environments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference27 articles.

1. LTE-advanced and the evolution of LTE deployments;Bjerke;IEEE Wireless Communications,2011

2. Efficient dynamic load balancing algorithms using iCAR systems: a generalized framework;Yanmaz,2002

3. A New Relay Based Dynamic Load Balancing Scheme in Cellular Networks;Yang,2010

4. Cell-Cluster Based Traffic Load Balancing in Cooperative Cellular Networks;Wang,2010

5. Power optimization using optimal small cell arrangements in different deployment scenarios;Gupta;International Journal of Communication Systems,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3