The ALEX17 diurnal cycles in complex terrain benchmark

Author:

Sanz Rodrigo J,Santos P,Chávez Arroyo R,Avila M,Cavar D,Lehmkuhl O,Owen H,Li R,Tromeur E

Abstract

Abstract The NEWA ALEX17 experiment was conducted with the objective of characterizing the wind conditions upstream of the Alaiz Test Site for the validation of flow models. From the intensive operational period, a case study has been selected for a Wakebench benchmark consisting of four consecutive days with relatively persistent winds from the North. The validation is centered around a 118-m mast at the Alaiz site and six additional masts located along the valley and at the lee side of a ridge delimiting a 8-km long area of interest. The benchmark is a follow-up of the GABLS3 diurnal cycle benchmark in flat terrain to test mesoscale-to-microscale transient and steady-state modeling methodologies in the assessment of stability-dependent bin-averaged wind conditions. Meso-micro methodologies reduce the wind speed mean bias from 32%, at 3-km mesoscale, to ±5%. Beyond mean bias mitigation, these initial results demonstrate the added value of meso-micro coupling at reproducing non conventional wind conditions at the test site like high-shear low-level jets in stable conditions and negative wind shear in unstable conditions. The benchmark also discusses the challenges of each meso-micro methodology going forward.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3