Substrate-dependent Growth of CH3NH3PbI3 Films Deposited by Vacuum Evaporation

Author:

Lu Ying,Han Qiang,Zhao Yuan,Yang Chenggang,Li Youzhen,Liu Xiaoliang

Abstract

Abstract CH3NH3PbI3 (MAPbI3) films were prepared by dual-source vacuum evaporation on Au, poly(3,4-ethylenedioxythiophene) (PEDOT), and indium-tin-oxide(ITO) with the similar deposition parameters. The films were characterized with X-ray diffraction (XRD), steady-state photoluminescence (PL) and Raman spectroscopy. The interface electronic structures of co-evaporated MAPbI3 films on different substrates were studied with ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The research indicates that Au is more suitable for the film growth than the other substrates, especially when the film is very thin. The poor adsorption of the precursors may make it difficult to form MAPbI3 thin film on ITO. Furthermore, it is found that the charge transfer efficiency at the interface between PEDOT and MAPbI3 is relatively high, which indicates that PEDOT can act as an effective hole transport layer for MAPbI3-based devices.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3