Impact of Polypropylene, Steel, and PVA Fibre Reinforcement on Geopolymer Composite Creep and Shrinkage Deformations

Author:

Gailitis Rihards,Sprince Andina,Kozlovksis Tomass,Pakrastins Leonids,Volkova Viktorija

Abstract

Abstract For the last 40 years, there has been increased interest in geopolymer composite development and its mechanical properties. In the last decades, there have been cases when geopolymer composites have been used for civil engineering purposes, such as buildings and infrastructure projects. The main benefit of geopolymer binder usage is that it has a smaller impact on the environment than the Portland cement binder. Emissions caused by geopolymer manufacturing are at least two times less than emissions caused by Portland cement manufacturing. As geopolymer polymerization requires elevated temperature, it also has a significant moisture evaporation effect that further increases shrinkage. It can lead to increased cracking and reduced service life of the structures. Due to this concern, for long-term strain reduction, such as plastic and drying shrinkage and creep, fibre reinforcement is added to constrain the development of stresses in the material. This research aims to determine how different fibre reinforcements would impact geopolymer composites creep and shrinkage strains. Specimens for long-term property testing purposes were prepared with 1% of steel fibres, 1% polypropylene fibres (PP), 0.5% steel and 0.5% polyvinyl alcohol fibres, 5% PP fibres, and without fibres (plain geopolymer). The lowest creep strains are 5% PP fibre specimens, followed by 1% PP fibre, plain, 0.5% steel fibre and 0.5% PVA fibre, and 1% steel fibre specimens. The lowest specific creep is to 5% PP fibre reinforced specimens closely followed by 1% PP fibre followed by 0.5% steel and 0.5% PVA fibre, plain and 1% steel fibre reinforced composites. Specimens with 0.5% steel and 0.5 PVA fibre showed the highest compressive strength, followed by 1% PP fibre specimens, plain specimens, 1% steel fibre, and 5% PP fibre reinforced specimens. Only specimens with 1% PP fibre and 0.5% steel, and a 0.5% PVA fibre inclusion showed improved mechanical properties. Geopolymer concrete mix with 1% PP fibre inclusion and 0.5% steel and 0.5% PVA fibre inclusion have a 4.7% and 11.3% higher compressive strength. All the other fibre inclusion into mixes showed significant decreases in mechanical properties.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3