From conception to clinical trial: IViST, the first multi-sensor-based platform for real-time In Vivo Source Tracking in HDR brachytherapy

Author:

Linares Rosales H. M.,Cantin Audrey,Aubin Sylviane,Beddar Sam,Beaulieu Luc

Abstract

Abstract This study is aimed to introduce a novel multi-sensor-based dosimetry platform for real-time plan monitoring in HDR brachytherapy: IViST (In Vivo Source Tracking). IViST is a platform composed of three components: 1) an optimized and characterized multi-point plastic scintillator dosimeter (3 points mPSD; using BCF-60, BCF-12, and BCF-10 scintillators), 2) a compact assembly of photomultiplier tubes (PMTs) coupled to dichroic mirrors and filters for high-sensitivity scintillation light collection, and 3) a Python-based graphical user interface used for system management and signal processing. IViST can simultaneously measure dose, triangulate source position, and measure dwell time. By making 100 000 measurements/s, IViST samples enough data to quickly perform key QA/QC tasks such as identifying wrong individual dwell time, position, or interchanged transfer tubes. By using 3 co-linear sensors and planned information for an implant geometry, the platform can also triangulate source position in real-time. A clinical trial to validate this system is presently on-going using the IViST system.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3