Author:
Rahwanto A,Ismail I,Nurmalita N,Mustanir ,Jalil Z
Abstract
Abstract
Supplying hydrogen to industrial users is now a major business around the world. One of the problems, before hydrogen can be implemented into today’s infrastructure is storing the hydrogen. In this report, we introduced a high-pressure milling method for preparing the MgH2 catalyzed with Ni nanoparticle. We have reactively milled the MgH2 + 2 mol % Ni, which has size ∼90 nm, under 100 bar of hydrogen. The structural changes during milling were characterized by XRD and high-resolution scanning electron microscopy. The hydrogen sorption properties were studied by gravimetric analysis. As the results, it was showed that the milling process reduced into 2 h. The sorption kinetics was proceeding 5.3 wt% of hydrogen around 5 min at 300°C, while desorption in 50 mbar was completed within 4 min. Preparing the Mg-based hydrides under high pressure with 2 mol% Ni in nanoscale as catalyst improved the hydrogen storage properties and decreased the milling time, as well.
Subject
General Physics and Astronomy
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献