Implementation of decision tree using C5.0 algorithm in preference and electability survey results on regional head election in Aceh

Author:

Marzuki M,Iqbal M,Nivada A,Sofyan H,Usman T,Nazaruddin N,Munawar M,Rasudin R

Abstract

Abstract The decision tree is one of the methods of classification in data mining. There are many algorithms used to construct the tree model; one of them is C5.0 algorithm. The tree model with C5.0 algorithm was carried out based on the survey result dataset of the preference and electability of the regional head selection pre-campaign year 2018 in one of the districts in Aceh. The datasets consisted of 5 predictor variables, i.e. sub-districts, age, main occupations, highest education, and attracting factors from regional head candidate candidates. Variable categories of decisions ranged from candidates A, B, C, and D. The distribution of datasets was divided into training data and testing data using the k-fold cross-validation method. The optimum tree model formation was based on the accuracy value of model and coefficient of Kappa. The result showed that the best tree model was constructed using testing data on S = 10. The accuracy of the model and the Kappa coefficient were 0.8427 and 0.7208, respectively. There were three rules generated with five nodes. The main predictor variable contributing to the optimum model was the attracting factor of candidates and sub-districts.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Decision tree classifier for university single rate tuition fee system;Abidin;Int J Business Intelligence and Data Mining,2020

2. Exploring Decision Rules for Election Results by Classification Trees;Kocakoç,2019

3. Decision tree-based machine learning algorithm for in-node vehicle classification;Ying,2015

4. Comparative Analysis of C4.5 and C5.0 Algorithms on Crop Pest Data International;Revathy;Journal of Innovative Research in Computer and Communication Engineering,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting Election Results with Machine Learning—A Review;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3