Metasurfaces based on Functional Materials in THz and Optical Regions

Author:

Erfani-azad A.,Shahmirzadi N.V.,Pakizeh T.,Kolodev V.,von Gratoswki S.

Abstract

Abstract In this paper we present the properties of metamaterials and metasurfaces composed of resonant micro/nano-structures in which their tunable electromagnetic (EM) properties can be achieved by employing the substrate or resonant structures consisting of functional materials such as polydimethylsiloxane (PDMS), Vanadium-dioxide (VO2), shape memory alloys (SMAs) or in general smart materials. Using a mechanical stretching PDMS substrate for a metasurface, reflectance and transmission of electromagnetic (EM) wave can be remarkably altered. Moreover, by employing resonators consists of Nitinol (NiTi) split ring resonators (SRR) which transforms to complete ring resonator (CRR) thermally, the resonance wavelength and its modal behaviour are affected. Furthermore, the chiroptical activity of planar optical metasurfaces composed of L-shape heterogeneous (Ag-VO2) dimer is studied as well. It is shown that by increasing temperature from room temperature to 81°C, the observed optical activity (OA) at 690 nm has been raised ∼ 50%, because of the occurred phase transition.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference6 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3