Molecular dynamics simulation of thermal properties of modified graphene / n-octadecane composite phase change material

Author:

Li J,Mao Y,Yang X,Liao Y N,Cai D,Chen S S,Sun K,Zheng Y J

Abstract

Abstract Phase change materials have been widely used in building energy-saving and off-peak energy storage systems, but most phase change materials limit their application because of their low thermal conductivity. Improving their heat transfer performance and revealing the heat transfer mechanism from a microscopic perspective are the keys to practical applications. The PCM system composed of n-octadecane and modified graphene was established by molecular dynamics simulation and the influence of macro thermal properties was analyzed from a microscopic perspective including end-to-end distance and torsional angle distribution, radial distribution function, and self-diffusion coefficient. The results show that the thermal conductivity of PCMS increases with increased modified graphene content. When the mass fraction is 26.88%, the thermal conductivity increases by 44.5%, which is consistent with the trend of experimental values. The addition of modified graphene resulted in a more concentrated distribution of n-octadecane molecules, indicating that the arrangement of n-octadecane molecules was affected, increasing the thermal conductivity of n-octadecane. The deviation of phase transition temperature from the experimental value is less than 1%.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3