Thermal performance affected by the mesoscopic characteristics of the ceramic matrix composite for hypersonic vehicle

Author:

Lei LIU,Xiaofeng YANG,Guangming XIAO,Dong WEI,Yanxia DU

Abstract

Abstract The rigorous thermal environment brought by long-time high-speed flight is imposed severe requirements on the structural bearing capacity and structural thermal safety of the aircraft. The integrated non-ablative thermal protection system based on continuous fiber-reinforced ceramic matrix composites is becoming a hot spot on the design of aircraft structures. However, the multi-scale, non-linear, non-uniform features of such materials, as well as complex thermal and mechanical characteristics, pose serious challenges to structural design and evaluation. Under the aero heating environment, the non-uniform temperature rising and thermal matching between different components in the continuous fiber-reinforced ceramic matrix composites are extremely complicated, which has a significant influence on the thermal safety performance of the structure. In this paper, based on the commonly used 3D orthogonal weaving process and the thermal characteristics prediction method of fiber bundles considering the effect of PyC interface layer, the fluid-structural strong thermal coupling characteristics of different woven parameters in typical aircraft structure is carried out. Quantitatively characterizing the heat transfer characteristics of this new material under the actual flight condition of the aircraft can further to improve the accuracy of the thermal property parameters obtained based on the ground test. The analysis results show that increasing the proportion of fiber bundles in a certain direction is the most effective method to increase the thermal conductivity in this direction. At the same time, the arrangement of the coupling yarns will also have a greatly influence on the thermal conductivity of the material. These results is of great significance for the design of the materials.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3