Electrical Appliance Recognition Algorithm Based on Neural Network and Kernel Density Estimation

Author:

Zheng Huatong,Liu Yufeng,Zhou Lei

Abstract

Abstract With the rapid development of the social economy, the need for social intelligent transformation is increasingly urgent. In order to identify the electrical equipment quickly and accurately and reduce the false recognition rate, we propose a new identification algorithm, which uses the neural network model to pre-identify the connected electrical equipment and then conducts a secondary test through the kernel density estimation model. The experimental results show that the algorithm has a high recognition rate for the trained model and, at the same time, solves the misrecognition problem of the new electrical appliance neural network model in the production environment.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference10 articles.

1. Enhancing electricity audits in residential buildings with non-intrusive load monitoring;Berges;J. Ind. Ecol.,2010

2. Non-intrusive appliance load monitoring;Hart;Proc. IEEE,1992

3. Household Appliance Recognition Through a Bayes Classification Model[J];Yan;Sustainable Cities and Society,2018

4. Design of a Smart Socket Functioned with Electrical Appliance Identification;Yu,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3