Complete ensemble empirical mode decomposition with adaptive noise integrating feedforward neural network for tourist arrival forecasting

Author:

Herawati S,Negara YDP,Latif M

Abstract

Abstract The tourism sector has an important role in helping the income of a region, especially for economic development and opportunities to expand employment. However, the trend tourist arrival to these tourist attractions has decreased since the COVID-19 pandemic. The government enforces a new normal policy to reopen tourist attractions by implementing health protocols. Local governments and tourism managers need forecasting of tourist arrivals to help plan the tourism sector in the future and anticipate an increase in tourist arrival. Most tourist arrivals are influenced by several factors, such as : seasonality, politics, disasters, crises, and other important events. One method to accommodate these factors is using Ensemble Empirical Mode Decomposition (EEMD). However, EEMD still produces a mixing mode during decomposition. Complete Ensemble Mode Decomposition with Adaptive Noise (CEEMDAN) is proposed to overcome the weaknesses of EEMD. This research integrates CEEMDAN with Feedforward Neural Network (FNN) in generating forecasts. The experiment results show that the integration of CEEMDAN and FNN can produce good forecasting accuracy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3