A New Visual Analytics Toolkit for ATLAS Computing Metadata

Author:

Grigorieva M A,Alekseev A A,Galkin T P,Klimentov A A,Korchuganova T A,Milman I E,Padolski S V,Pilyugin V V,Titov M A

Abstract

Abstract The ATLAS experiment at the Large Hadron Collider has a complex heterogeneous distributed computing infrastructure, which is used to process and analyse exabytes of data. Metadata are collected and stored at all stages of data processing and physics analysis. All metadata could be divided into operational metadata to be used for the quasi on-line monitoring, and archival to study the behaviour of corresponding systems over a given period of time (i.e. long-term data analysis). Ensuring the stability and efficiency of complex and large-scale systems, such as those in the ATLAS Computing, requires sophisticated monitoring tools, and the long-term monitoring data analysis becomes as important as the monitoring itself. Archival metadata, which contains a lot of metrics (hardware and software environment descriptions, network states, application parameters, errors) accumulated for more than a decade, can be successfully processed by various machine learning (ML) algorithms for classification, clustering and dimensionality reduction. However, the ML data analysis, despite the massive use, is not without shortcomings: the underlying algorithms are usually treated as “black boxes”, as there are no effective techniques for understanding their internal mechanisms. As a result, the data analysis suffers from the lack of human supervision. Moreover, sometimes the conclusions made by algorithms may not be making sense with regard to the real data model. In this work we will demonstrate how the interactive data visualization can be applied to extend the routine ML data analysis methods. Visualization allows an active use of human spatial thinking to identify new tendencies and patterns found in the collected data, avoiding the necessity of struggling with the instrumental analytics tools. The architecture and the corresponding prototype of Interactive Visual Explorer (InVEx) - visual analytics toolkit for the multidimensional data analysis of ATLAS computing metadata will be presented. The web-application part of the prototype provides an interactive visual clusterization of ATLAS computing jobs, search for computing jobs non-trivial behaviour and its possible reasons.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3