HEP Analyses on Dynamically Allocated Opportunistic Computing Resources

Author:

Schnepf M J,von Cube R F,Heidecker C,Fischer M,Giffels M,Kuehn E,Heiss A,Petzold A,Quast G,Sauter M

Abstract

Abstract The current experiments in high energy physics (HEP) have a huge data rate. To convert the measured data, an enormous number of computing resources is needed and will further increase with upgraded and newer experiments. To fulfill the ever-growing demand the allocation of additional, potentially only temporary available non-HEP dedicated resources is important. These so-called opportunistic resources cannot only be used for analyses in general but are also well-suited to cover the typical unpredictable peak demands for computing resources. For both use cases, the temporary availability of the opportunistic resources requires a dynamic allocation, integration, and management, while their heterogeneity requires optimization to maintain high resource utilization by allocating best matching resources. To find the best matching resources which should be allocated is challenging due to the unpredictable submission behavior as well as an ever-changing mixture of workflows with different requirements. Instead of predicting the best matching resource, we base our decisions on the utilization of resources. For this reason, we are developing the resource manager TARDIS (Transparent Adaptive Resource Dynamic Integration System) which manages and dynamically requests or releases resources. The decision of how many resources TARDIS has to request is implemented in COBalD (COBald - The Opportunistic Balancing Daemon) to ensure further allocation of well-used resources while reducing the amount of insufficiently used ones. TARDIS allocates and manages resources from various resource providers such as HPC centers or commercial and public clouds while ensuring a dynamic allocation and efficient utilization of these heterogeneous opportunistic resources. Furthermore, TARDIS integrates the allocated opportunistic resources into one overlay batch system which provides a single point of entry for all users. In order to provide the dedicated HEP software environment, we use virtualization and container technologies. In this contribution, we give an overview of the dynamic integration of opportunistic resources via TARDIS/COBalD in our HEP institute as well as how user analyses benefit from these additional resources.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3