ATLAS High Level Trigger within the multi-threaded software framework AthenaMT

Author:

Bielski Rafal

Abstract

Abstract Athena is the software framework used in the ATLAS experiment throughout the data processing path, from the software trigger system through offline event reconstruction to physics analysis. The shift from high-power single-core CPUs to multi-core systems in the computing market means that the throughput capabilities of the framework have become limited by the available memory per process. For Run 2 of the Large Hadron Collider (LHC), ATLAS has exploited a multi-process forking approach with the copy-on-write mechanism to reduce the memory use. To better match the increasing CPU core count and, therefore, the decreasing available memory per core, a multi-threaded framework, AthenaMT, has been designed and is now being implemented. The ATLAS High Level Trigger (HLT) system has been remodelled to fit the new framework and to rely on common solutions between online and offline software to a greater extent than in Run 2. We present the implementation of the new HLT system within the AthenaMT framework, which is going to be used in ATLAS data-taking during Run 3 (2021 onwards) of the LHC. We also report on interfacing the new framework to the current ATLAS Trigger and Data Acquisition (TDAQ) system, which aims to bring increased flexibility whilst needing minimal modifications to the current system. In addition, we show some details of architectural choices which were made to run the HLT selection inside the ATLAS online dataflow, such as the handling of the event loop, returning of the trigger decision and handling of errors.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

1. The ATLAS Experiment at the CERN Large Hadron Collider;JINST,2008

2. GAUDI – A software architecture and framework for building HEP data processing applications;Barrand;Comput. Phys. Commun.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3