Boosting Performance of Data-intensive Analysis Workflows with Distributed Coordinated Caching

Author:

Heidecker C,von Cube R F,Giffels M,Quast G,Sauter M,Schnepf M J

Abstract

Abstract Data-intensive end-user analyses in high energy physics require high data throughput to reach short turnaround cycles. This leads to enormous challenges for storage and network infrastructure, especially when facing the tremendously increasing amount of data to be processed during High-Luminosity LHC runs. Including opportunistic resources with volatile storage systems into the traditional HEP computing facilities makes this situation more complex. Bringing data close to the computing units is a promising approach to solve throughput limitations and improve the overall performance. We focus on coordinated distributed caching by coordinating workows to the most suitable hosts in terms of cached files. This allows optimizing overall processing efficiency of data-intensive workows and efficiently use limited cache volume by reducing replication of data on distributed caches. We developed a NaviX coordination service at KIT that realizes coordinated distributed caching using XRootD cache proxy server infrastructure and HTCondor batch system. In this paper, we present the experience gained in operating coordinated distributed caches on cloud and HPC resources. Furthermore, we show benchmarks of a dedicated high throughput cluster, the Throughput-Optimized Analysis-System (TOpAS), which is based on the above-mentioned concept.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

1. Dynamic Integration and Management of Opportunistic Resources for HEP;Schnepf,2019

2. Data Locality via Coordinated Caching for Distributed;Fischer;Processing Journal of Physics: Conference Series,2016

3. Distributed computing in practice: the Condor experience;Thain;Concurrency and Computation: Practice and Experience,2005

4. XROOTD/TXNetFile: A Highly Scalable Architecture for Data Access in the ROOT Environment;Dorigo;Proceedings of TELE-INFO’05,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3