In-Memory Parallel Computing for Partial Wave Analysis

Author:

Wei Zhanchen,Huang Qiulan,Sun Gongxing,Liu Xiaoyu

Abstract

Abstract The traditional partial wave analysis (PWA) algorithm is designed to process data serially which requires a large amount of memory that may exceed the memory capacity of one single node to store runtime data. It is quite necessary to parallelize this algorithm in a distributed data computing framework to improve its performance. Within an existing production-level Hadoop cluster, we implement PWA algorithm on top of Spark to process data storing on low-level storage system HDFS. But in this case, sharing data through HDFS or internal data communication mechanism of Spark is extremely inefficient. In order to solve this problem, this paper presents an in-memory parallel computing method for PWA algorithm. With this system, we can easily share runtime data in parallel algorithms. We can ensure complete data locality to keep compatibility with the traditional data input/output way and cache most repeatedly used data in memory to improve the performance, owe to the data management mechanism of Alluxio.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference8 articles.

1. Partial Wave Analysis Using Graphics Units;Berger;Journal of Physics: Conference Series,2010

2. 1 February 2017, kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data;Maillo;Knowledge-Based Systems

3. Scaling machine learning for target prediction in drug discovery using Apache Spark Future Generation;Harnie;Computer Systems,2017

4. Evaluating the Impact of Data Placement to Spark and SciDB with an Earth Science Use Case;Doan,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3