Using DODAS as deployment manager for smart caching of CMS data management system

Author:

Tracolli M.,Antonacci M.,Boccali T.,Bonacorsi D.,Ciangottini D,Donvito G.,Duma C.,Gaido L.,Salomoni D.,Spiga D.,Kuznetsov V.

Abstract

Abstract DODAS stands for Dynamic On Demand Analysis Service and is a Platform as a Service toolkit built around several EOSC-hub services designed to instantiate and configure on-demand container-based clusters over public or private Cloud resources. It automates the whole workflow from service provisioning to the configuration and setup of software applications. Therefore, such a solution allows using “any cloud provider”, with almost zero effort. In this paper, we demonstrate how DODAS can be adopted as a deployment manager to set up and manage the compute resources and services required to develop an AI solution for smart data caching. The smart caching layer may reduce the operational cost and increase flexibility with respect to regular centrally managed storage of the current CMS computing model. The cache space should be dynamically populated with the most requested data. In addition, clustering such caching systems will allow to operate them as a Content Delivery System between data providers and end-users. Moreover, a geographically distributed caching layer will be functional also to a data-lake based model, where many satellite computing centers might appear and disappear dynamically. In this context, our strategy is to develop a flexible and automated AI environment for smart management of the content of such clustered cache system. In this contribution, we will describe the identified computational phases required for the AI environment implementation, as well as the related DODAS integration. Therefore we will start with the overview of the architecture for the pre-processing step, based on Spark, which has the role to prepare data for a Machine Learning technique. A focus will be given on the automation implemented through DODAS. Then, we will show how to train an AI-based smart cache and how we implemented a training facility managed through DODAS. Finally, we provide an overview of the inference system, based on the CMS-TensorFlow as a Service and also deployed as a DODAS service.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference11 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Latency Aware and Dynamic Caching Model for Heterogeneous Datalake Environments;2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC);2024-07-02

2. MLaaS4HEP: Machine Learning as a Service for HEP;Computing and Software for Big Science;2021-07-05

3. Smart Caching at CMS: applying AI to XCache edge services;EPJ Web of Conferences;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3