Federated data storage evolution in HENP: data lakes and beyond

Author:

Zarochentsev Andrey,Espinal Xavier,Kiryanov Andrey,Schovancová Jaroslava

Abstract

Abstract Storage has been identified as the main challenge for the future distributed computing infrastructures: Particle Physics (HL-LHC, DUNE, Belle-II), Astrophysics and Cosmology (SKA, LSST). In particular, the High Luminosity LHC (HL-LHC) will begin operations in the year of 2026 with expected data volumes to increase by at least an order of magnitude as compared with the present systems. Extrapolating from existing trends in disk and tape pricing, and assuming flat infrastructure budgets, the implications for data handling for end-user analysis are significant. HENP experiments need to manage data across a variety of mediums based on the types of data and its uses: from tapes (cold storage) to disks and solid state drives (hot storage) to caches (including world wide access data in clouds and “data lakes”). The DataLake R&D project aims at exploring an evolution of distributed storage while bearing in mind very high demands of the HL-LHC era. Its primary objective is to optimize hardware usage and operational costs of a storage system deployed across distributed centers connected by fat networks and operated as a single service. Such storage would host a large fraction of the data and optimize the cost, eliminating inefficiencies due to fragmentation. In this talk we will highlight current status of the project, its achievements, interconnection with other research activities in this field like WLCG-DOMA and ATLAS-Google DataOcean, and future plans.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. New strategies of the LHC experiments to meet the computing requirements of the HL-LHC era;Adamova,2017

2. Exabyte Scale Storage at CERN;Peters;J. Phys.: Conf. Ser.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Handling Optimization in Russian Data Lake Prototype;Journal of Physics: Conference Series;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3