Hardware Accelerated ATLAS Workloads on the WLCG Grid

Author:

Forti A C,Heinrich L,Guth M

Abstract

Abstract In recent years the usage of machine learning techniques within data-intensive sciences in general and high-energy physics in particular has rapidly increased, in part due to the availability of large datasets on which such algorithms can be trained, as well as suitable hardware, such as graphic or tensor processing units, which greatly accelerate the training and execution of such algorithms. Within the HEP domain, the development of these techniques has so far relied on resources external to the primary computing infrastructure of the WLCG (Worldwide LHC Computing Grid). In this paper we present an integration of hardware-accelerated workloads into the Grid through the declaration of dedicated queues with access to hardware accelerators and the use of Linux container images holding a modern data science software stack. A frequent use-case in the development of machine learning algorithms is the optimization of neural networks through the tuning of their Hyper Parameters (HP). For this often a large range of network variations must be trained and compared, which for some optimization schemes can be performed in parallel – a workload well suited for Grid computing. An example of such a hyper-parameter scan on Grid resources for the case of flavor tagging within ATLAS is presented.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3