Enzymatic Degradation of Polycarbonates: Response Surface Methodology (RSM) Based Approach

Author:

Sudha G,Ganesh V

Abstract

Abstract Polycarbonate is a tough polymer known for its extreme toughness, inertness and transparency and is considered to be chemically resistant. Polycarbonates are susceptible to photo degradation and thermal degradation. The mechanism followed in the degradation of similar polymeric compounds is found to be mostly hydrolysis reactions. Reactions of Bisphenol A polycarbonate with the lipase Candida rugosa were carried out over a period of 72 hours at different temperatures ranging from 25 oC to 65 oC and at different lipase activities of 400 U/ml, 800 U/ml, 1200 U/ml and 1600 U/ml. The weight loss of polycarbonate was studied against various factors. It is found that there is a rapid loss of polycarbonate around the time period above 48 hrs and at the temperature 55 oC for above enzyme activities. The supernatant was subjected to FTIR and the presence of the Bisphenol A, a monomer was found. The results were subjected to the statistical tool, Design of Experiments, in which the fitness of the results were statistically analyzed and the interactions between the parameters studied. The Response surface methodology (RSM) and the ANOVA analysis were performed on the experimental data and the parameters were found to be non interactive. The model equation for the degradation kinetics is obtained from the coefficients of the ANOVA analysis and the fitness of the model data with the actual obtained experimental data is found to be close and similar over the parameters

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference22 articles.

1. Biodegradation of bisphenol-A in river sediment;Chang;Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering,2011

2. Enzymatic degradation of radiation crosslinked poly (ε-caprolactone);Darwis;Polymer degradation and stability,1998

3. Thermal and themoxidative degradation processes in poly(bisphenol-A carbonate);Giorgio;Journal of Analytical and Applied Pyrolysis,2002

4. Targeting microplastic particles in the void of diluted suspensions;Islam;Environment International,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3