A right preconditioner for the LSMR method

Author:

Hasanpour Afsaneh,Mojarrab Maryam

Abstract

Abstract The LSMR (Least Squares Minimal Residual) method is an absorbing solver that can solve linear system Ax = b and least squares problem min ||Ax = b|| where A is a sparse and large matrix. This method is based on the Golub-Kahan bidiagonalization process and sometimes it may converge slowly like other methods. I n order to prevent this event, a right preconditioner for LSMR method is presented to solve large and sparse linear system which used for LSQR (Least Squares with QR factorization) method before. Numerical examples and comparing the preconditioned LSMR method to unpreconditioned LSMR method would show the effectiveness of the preconditioner. I t is obtained from this paper that PLSMR (Preconditioned LSMR) method has a better performance in reducing the number of iterations and relative residual norm in comparing with the original LSMR method.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3