An efficient ADMM-type algorithm for deep semi-nonnegative matrix factorization

Author:

Zhou Yijia,Xu Lijun

Abstract

Abstract In this paper, we focus on deep semi-nonnegative matrix factorization (DSemiNMF) which has a wider application in the real world than traditional NMF. We propose an efficient algorithm based on the classic alternating direction method of multipliers (ADMM) for DSemiNMF. By utilizing structures in DSemiNMF, we derive an efficient updating rule for updating subproblems according to its KKT conditions. Numerical experiments are conducted to compare the proposed algorithm with state-of-the-art deep semi-NMF algorithm. Results show that our algorithm performs better and the deep model indeed results in better clustering accuracy than single-layer model.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference32 articles.

1. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values;Paatero;Environmetrics,1994

2. Metagenes and molecular pattern discovery using matrix factorization;Brunet;PNAS.,2004

3. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology;Devarajan;PLoS computational biology,2008

4. Email surveillance using nonnegative matrix factorization;Berry;Computational & Mathematical Organization Theory,2005

5. Exploiting discriminant information in NMF with application to frontal face verification;Zafeiriou;TNN.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3