Epileptic EEG information entropy based on different entropy estimation methods

Author:

Li Min,Fang Yunjie,Zhang Yu,Zhang Yiling,Chen Junwei,Zhu Bingxin,Yan Wei,Wang Jun

Abstract

Abstract We use the information entropy based on linear model, K-nearest neighbour estimation and kernel estimation to study the brain, a complex nonlinear dynamic system, and distinguish the nonlinear dynamic complexity of epileptic and normal EEG signals in Bonn database. The entropy estimation method of linear model and K-nearest neighbour estimation can only distinguish the information entropy of epileptic period from that of other two cases, but it can’t distinguish the information entropy of epileptic interval and normal EEG signals. However, kernel estimation can distinguish the information entropy of EEG signals in three states well, and the threshold range is [0.1,3]. With the increase of threshold, the discrimination effect is gradually significant until stable, and the discrimination effect is obvious when the threshold is 0.5. The result of analysis indicated that EEG information entropy was the highest in the epileptic seizure period, followed by the epileptic seizure interval, and the lowest in normal human brain.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Multifractal analysis of correlation properties of electroencephalograms (EEG);Dojnow;C. R. Acad. Bulg. Sci.,2007

2. Predicting chaotic time series;Farmer;Phys. Rev. Lett.,1987

3. Nonlinear prediction of chaotic time series;Casdagli;Phys. D.,1989

4. Measuring regularity by means of a corrected conditional entropy in sympathetic outflow;Porta;Biol. Cybern.,1998

5. Quantitative analysis of heart rate variability;Kurths;Chaos: An Interdisciplinary Journal of Nonlinear Science,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3