Artificial nervous systems – a technology to achieve biologically modeled intelligence and control for robotics

Author:

Narcross Fredric

Abstract

Abstract Migrating from machine learning and deep learning into the next wave of technology will likely require biological replication rather than biological inspiration. An approach to achieving this requires duplicating entire nervous systems, or at least parts thereof. In theory, these artificial nervous systems (ANS) could reproduce everything required for a system to be biologically intelligent even to the point of being self-aware. This would additionally entail that the resultant systems have the ability to acquire information from both their internal and external environments as well as having the ability to act within the external environment using locomotion and manipulators. Robots are a natural answer for the resultant mechanism and if supplied with an artificial nervous system, the robot might be expected to achieve biologically modelled intelligence (BMI) and control. This paper will provide an overview of the tools for creating artificial nervous systems, as well as provide a roadmap for utilizing the tools to develop robots with general-purpose learning skills and biologically modelled intelligence.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference77 articles.

1. The Computational Limits of Deep Learning;Thompson;MIT Initiative on the Digital Economy Research Brief,2020

2. Analysing the Limitations of Deep Learning for Developmental Robotics

3. Deep Learning Limitations and Flaws;Zohuri;Modern Approaches on Material Science,2020

4. The Limitations of Deep Learning in Achieving Real Artificial Intelligence;Wu;Proceedings,2022

5. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions;Alzubaidi;J Big Data,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3