Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings

Author:

Szala M,Awtoniuk M,Łatka L,Macek W,Branco R

Abstract

Abstract The aim of the article is to build-up a simplified model of the effect of atmospheric plasma spraying process parameters on the deposits’ functional properties. The artificial neural networks were employed to elaborate on the model and the Matlab software was used. The model is crucial to study the relationship between process parameters, such as stand-off distance and torch velocity, and the properties of Al2O3-13 wt% TiO2 ceramic coatings. During this study, the coatings morphology, as well as its properties such as Vickers microhardness, porosity, and cavitation erosion resistance were taken into consideration. The cavitation erosion tests were conducted according to the ASTM G32 standard. Moreover, the cavitation erosion wear mechanism was presented. The proposed neural model is essential for establishing the optimisation procedure for the selection of the spray process parameters to obtain the Al2O3-13 wt% TiO2 ceramic coatings with specified functional properties.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3