Study on dynamic recrystallization of ultra-high strength 22MnB5 steel during hot rolling

Author:

Long M J,Zhang H H,Yang X H,Guo W,Ai S Y,Chen D F

Abstract

Abstract The effect of deformation temperature and strain rate on the recrystallization behavior of ultra-high strength hot formed 22MnB5 steel was systematically studied by isothermal compression experiments, and the microstructure was characterized and analyzed. The results show that the peak stress and peak strain of 22MnB5 steel decrease with increasing deformation temperature and increase with increasing strain rate. The dynamic recrystallization of 22MnB5 steel is more sensitive to temperature and less affected by strain rate. The recrystallization behavior is significant during isothermal deformation above 1323 K. Based on the hyperbolic sinusoidal constitutive equation, the accurate prediction model of dynamic recrystallization grain size and a dynamic recrystallization critical strain model for 22MnB5 steel were established. The relationship between recrystallization austenite grain size and deformation temperature and deformation amount was obtained as follows: d=4.1×103[ε·exp(350.38/RT)]. The critical strains of complete recrystallization and complete non-crystallization at each deformation temperatures were determined by the critical strain model, which can provide a basis for the optimization design of rolling process parameters.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3