A synthetic data generation procedure for univariate circular data with various outliers scenarios using Python programming language

Author:

Zulkipli N S,Satari S Z,Wan Yusoff W N S

Abstract

Abstract Synthetic data is artificial data that is created based on the statistical properties of the original data. The aim of this study is to generate a synthetic or simulated data for univariate circular data that follow von Mises (VM) distribution with various outliers scenario using Python programming language. The procedure of formulation a synthetic data generation is proposed in this study. The synthetic data is generated from various combinations of seven sample size, n and five concentration parameters, K. Moreover, a synthetic data will be generated by formulating a data generation procedure with different condition of outliers scenarios. Three outliers scenarios are proposed in this study to introduce the outliers in synthetic dataset by placing them away from inliers at a specific distance. The number of outliers planted in the dataset are fixed with three outliers. The synthetic data is randomly generated by using Python library and package which are ‘numpy’, ‘random’ and von Mises’. In conclusion, the synthetic data of univariate circular data from von Mises distribution is generated and the outliers are successfully introduced in the dataset with three outliers scenarios using Python. This study will be valuable for those who are interested to study univariate circular data with outliers and choose Python as an analysis tool.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Statistics of directional data;Mardia;Journal of the Royal Statistical Society B.,1975

2. The bias of the maximum likelihood estimators of the von Mises-Fisher concentration parameters;Best;Communication in Statistics-Simulation and Computation,1981

3. Review on outliers identification methods for univariate circular biological data;Satari;Advances in Science, Technology and Engineering Systems,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3