Author:
Sukri Suzarina Ahmed,Hoe Yeak Su,Khairuddin Taufiq Khairi Ahmad
Abstract
Abstract
This paper proposes a new numerical approach useful in dealing with nearly singular integrals, specifically, the integral of the first order polarization tensor (PT). Polarization tensor represents the integral equations in an asymptotic series, and it can also define the boundary value problem of a partial differential equation (PDE). Since PT has been widely used and implemented in many engineering areas, particularly electric and magnetic field areas, it is crucial to estimate the first order PT solutions accurately. In this regard, the computation of PT for different geometry types is basically from the quadratic interpolation and the multivariate polynomial fitting using the least square method. The numerical calculation of the integral of the singular integral operator, ??
∗ which is one of the primary integral processes before we obtained the solution of PT uses the multivariate polynomial fitting. This paper aims to provide an accurate numerical solution for first order PT for different geometry types, particularly sphere and ellipsoid geometry. The numerical results of the proposed method are shown together with the comparison of its analytical solutions. From the results obtained, the numerical solution of first order PT shows higher accuracy and higher convergence as the number of surface elements increases. The numerical and the analytical solution of first order PT for a sphere is discussed and represented in graphical form. The utilization of two different software types throughout this study is Netgen Mesh Generator and MATLAB to aid the numerical computation process. The simulation and the numerical examples verify the effectiveness and efficiency of the proposed method.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Low Area FPGA Implementation of Hyperbolic Tangent Function;2023 6th International Conference on Engineering Technology and its Applications (IICETA);2023-07-15
2. FPGA Implementation of Polynomial Curve Fitting Approximation for Sine and Cosine Generator;2022 5th International Conference on Engineering Technology and its Applications (IICETA);2022-05-31