Prediction of Rainfall Analysis Using Logistic Regression and Support Vector Machine

Author:

Praveena R,Babu T R Ganesh,Birunda M,Sudha G,Sukumar P,Gnanasoundharam J

Abstract

Abstract Rainfall prediction has a major effect on human civilization and is one of the most difficult, unpredictable activities. Precise and accurate predictions will help to rising human and financial risks pro-actively. This work presents a current supervised learning models of machine learning to focused on the Rainfall Prediction. Rainfall is also a significant issue in the planet because it impacts any single aspects that relies on the human being. Unpredictable and reliable estimation of rainfall is a challenging job today. In this work, gives a maximum outcome and a stronger forecast for rainfall using logistic regression and support Vector Machine (SVM) classifier for better prediction.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference20 articles.

1. Rainfall prediction using artificial neural networks;Lee;Journal of geographic information and Decision Analysis,1998

2. Monthly rainfall prediction using wavelet neural network analysis;Ramana;Water resources management,2013

3. All India summer monsoon rainfall prediction using an artificial neural network;Sahai;Climate dynamics,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monthly Rainfall Analysis in Southern Parts of India Using Machine Learning and Ensemble Methods;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18

2. Real-Time Rainfall Prediction in Kathmandu, Kapan Area using Sensor Data with Machine Learning and Linear Regression;Journal of Soft Computing Paradigm;2023-09

3. IoT-Enabled Weather Monitoring and Rainfall Prediction using Machine Learning Algorithm;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3