Fixed points and stability of A class of Stochastic dynamical system driven by Brownian motion

Author:

Wang Chun-Sheng,Ding Hong,Tong Ouyang

Abstract

Abstract In real life, many models and systems are affected by random phenomena. For this reason, experts and scholars propose to describe these stochastic processes with Brownian motion respectively. In this paper we consider a kind of stochastic Vollterra dynamical systems of nonconvolution type and give some new conditions to ensure that the zero solution is asymptotically stable in mean square by means of fixed point method. The theorems of asymptotically stability in mean square with a necessary conditions are proved. Some results of related papers are improved.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Fixed points and problems in stability theory for ordinary and functional dynamical systems [J];Burton;Dynamic Systems and Applications,2001

2. Stability in functional differential equations established using fixed point theory [J];Chuhua;Nonlinear Analysis: Theory, Methods & Applications,2008

3. Stability by fixed point theory or Liapunov’s theory: a comparison [J];Burton;Fixed Point Theory,2003

4. Fixed points and stability of a nonconvolution system [J];Burton;Proceedings of the American Mathematical Society,2004

5. Stability by Krasnoselskii’s theorem in totally nonlinear neutral differential equations [J];Derrardjia;Opuscula Mathematica,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3