Author:
Han Yang,Tao Yu-Chun,Yan Hai,Peng Zhi-Zhen,Liang Peng-Fei,Xu Ning
Abstract
Abstract
The condensate pipelines, main water supply pipelines, drain pipelines, and partial extraction pipelines of nuclear power plants are all coated with coatings on the outside of the pipelines to improve heat exchange efficiency. At present, the detection methods of ferromagnetic pipelines are mainly conventional ultrasound and ultrasonic guided waves. It is necessary to remove the insulation layer of the outer wall of the pipeline before the inspection, which leads to a prolonged inspection period and increased labor costs. This paper uses the measured and calculated values of the induced voltage to establish the optimal parameter inversion problem and combines the coupling relationship between the parameters to propose a reliable pulsed eddy current detection method for the relative wall thickness of ferromagnetic pipes. Using the pulsed eddy current detection method for the relative wall thickness of ferromagnetic pipelines proposed in this paper, the scanning detection of nuclear power plant steel pipes is compared with conventional ultrasonic testing. The detection results are reliable and suitable for non-destructive testing and evaluation of nuclear power plant ferromagnetic pipeline wall thickness corrosion thinning.
Subject
General Physics and Astronomy
Reference23 articles.
1. Study on pulsed far-field eddy current testing of small diameter tubes [J];Yu;Journal of mechanical engineering,2021
2. Simulations and experiments for the detection of flow-assisted corrosion in pipes [J];Kumar;Journal of Pressure Vessel Technology,2015
3. Simultaneous measurement of material properties and thickness of carbon steel plates using pulsed eddy currents [C];de Haan,2004
4. Pulsed eddy current testing of carbon steel pipes’ wall-thinning through insulation and cladding [J];Cheng;Journal of Nondestructive Evaluation,2012
5. Study on pulsed eddy current thickness measurement of ferromagnetic materials based on the signal slope [J];Ke;Journal of instrumentation,2011