Research on Defect Detection of Electric Energy Metering Box Based on YOLOv5

Author:

Yu Yong,Sun Yanchao,Zhao Chunxue,Qu Chong

Abstract

Abstract The manual inspection for the damage state of the electric energy metering box consumes a lot of time, the workload is large, and the data storage is difficult. In order to solve these problems, this paper proposes an automatic detection method for the damage state of the electric energy metering box based on the YOLOv5 algorithm. The actual metering box pictures taken by the operation and maintenance inspectors are used as the training set, LabelImage is used to annotate the data set, and YOLOv5s model is used to train the data set. The experimental results show that the method proposed in this paper can accurately mark the position of the metering box lid and accurately predict its damage state. The average accuracy reaches 98%, which can meet the requirements for the detection accuracy of the power metering box damage state in the operation and maintenance inspection work.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Research and application of power grid intelligent inspection management system based on physical ID;Qu;E3S Web of Conferences,2021

2. Electric Power Intelligent Inspection Robot: a Review;Tian;Journal of Physics: Conference Series,2021

3. DC high voltage electricity inspection device based on vibration capacitance sensor;Sun;Ferroelectrics,2019

4. YOLO9000: Better, Faster, Stronger;Redmon,2017

5. You Only Look Once: Unified, Real-Time Object Detection;Redmon,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3