XIDER: a novel X-ray detector for the next generation of high-energy synchrotron radiation sources

Author:

Williams M,Busca P,Collonge M,Fajardo P,Fischer P,Martin T,Ritzert M,Ruat M,Schimansky D

Abstract

Abstract Next-generation sources of synchrotron radiation pose significant challenges for 2D pixelated X-ray detectors, such as at the ESRF Extremely Brilliant Source (EBS), the first fourth-generation high-energy synchrotron facility. In particular, scattering and diffraction experiments require fast detectors with a high dynamic range, from single photon sensitivity to pile-up conditions under very high photon fluxes. Furthermore, in the case of high-energy applications, the high-Z sensor materials needed for efficient photon detection introduce other difficulties. Leakage current, bias- and flux-induced polarisation, and afterglow all must be carefully managed for the detector system to reach the required specifications. The XIDER project aims to fulfil the needs of the above-mentioned applications by implementing a novel incremental digital integration readout scheme. XIDER detectors seek to operate efficiently under the high-flux EBS beam of up to 100 keV photons, with a time resolution that can cope with near-continuous and pulsed beams. Simultaneously, non-constant leakage current contributions can be removed for noise-free single photon detection, resulting in a very high dynamic range. This contribution presents the recent developments of the XIDER project, including the first characterisation measurements with cadmium telluride sensors.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement of ultra-small-angle XPCS with the Extremely Brilliant Source;Journal of Synchrotron Radiation;2024-01-01

2. Concepts for the data flow control on the XIDer readout ASIC;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3