Effects of seeding temperature and growing time on the nanostructural characteristics of ZnO nanorods thin films prepared by chemical bath deposition

Author:

Liyana G R,Yuwono A H

Abstract

Abstract ZnO nanorods have been attracting much interest of researchers owing to their unique properties and extensive potential for various applications including light-emitting diode, dye-sensitized solar cells, and field-effect transistor. For being applied on those strategic applications, some basic nanostructural characteristics of ZnO nanorods such as crystallite size and the band gap energy are essential since they play important role in the device performance. In this study, the effect of seeding temperature and growing time on the nanostructure characteristics of ZnO nanorods were investigated. The seed solutions were initially prepared at the temperature of 0, 30, and 60°C for 1 hour by using zinc nitrate tetrahydrate and hexamethylenetetramine as precursors. The ZnO seed layers were subsequently deposited onto ITO glass substrates by spin coating technique before the chemical bath deposition (CBD) growth at temperature of 90°C for three different growth times (3, 4, and 5 hours). The synthesized ZnO nanorods were characterized by field-emission scanning electron microscopy, x-ray diffraction, and ultraviolet-visible spectrophotometry. The results showed that with the increase in seeding temperature from 0 to 60°C, the crystallite size decreased from 61.83 to 51.54 nm, while the band gap energy increased from 3.36 to 3.57 eV, respectively. On the other hand, with increase of growing time during CBD, the crystallite size was increased from 51.54 to 75.17 nm, and the band gap energy was consequently found to decrease from 3,57 to 3,46 eV. Considering the observed results above, the low seeding solution temperature and CBD growth time control are promising to optimize various applications performance required to have remarkably high crystallinity and low band gap energy.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

1. Zinc oxide nanostructures: growth, properties and applications;Wang;Journal of Physics: Condensed Matter,2004

2. Electrodeposition for the synthesis of ZnO nanorods modified by surface attachment with ZnO nanoparticles and their dye-sensitized solar cell applications;Meng;Ceramics International,2014

3. ZnO nanorods array based field-effect transistor biosensor for phosphate detection;Ahmad;Journal of Colloid and Interface Science,2017

4. Fabrication of ZnO nanorods p–n homojunction light-emitting diodes using Ag film as self-doping source for p-type ZnO nanorods;Kwon;The Journal of Physical Chemistry C,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3