Preliminary Analysis on Burnup Calculation of Several Arrangement of TRISO and Pebble inside an MCNP Model of HTR Core

Author:

Luthfi W,Suwoto ,Setiadipura T,Zuhair

Abstract

Abstract Several studies related to simplifying the modeling of pebble bed High-Temperature Reactor core (HTR) has been developed before. From some calculation on several MCNP models with a fueled pebble to dummy ratio 57:43, using a combination of several types of TRISO (TRi-structural ISOtropic particle fuel) unit and Pebble unit is modeled to achieve its first criticality. In this paper, some MCNP model that uses 27000 pebbles with a 57:43 ratio and 100% fueled pebble is created to be used on burnup calculation and to compare its k-eff and nuclide inventory. From this burnup calculation, it could be seen that SC (Simple Cubic) TRISO unit has faster calculation time followed by the HCP (Hexagonal Close Packed) TRISO unit and then the FCC (Face-Centered Cubic) TRISO unit. The BCC (Body-Centered Cubic) pebble unit had some consistent deviation from another pebble unit, and it still needs more study to know more about the reason behind it. It could be seen that if there are some dummy pebbles inside the reactor, then the deviation would be higher than if there is just fueled pebble inside the reactor. On the 57:43 ratio, the absolute average deviation of k-eff on burnup calculation is lower than 2% and 10% for nuclide inventory (mass). On 100% fueled pebble, it’s below 0.15% on k-eff absolute deviation and below 8% on nuclide inventory deviation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Neutron Dose Rate Analysis on HTGR-10 Reactor using Monte Carlo Code;Suwoto;Journal of Physics: Conference Series,2018

2. The Effects of Applying Silicon Carbide Coating on Core Reactivity of Pebble-bed HTR in Water Ingress Accident;Zuhair;Kerntechnik,2017

3. Analisis Laju Dosis Neutron Teras RGTT200K dengan MCNP5;Suwoto;Jurnal Sains dan Teknologi Nuklir Indonesia,2016

4. Study on Characteristic of Temperature Coefficient of Reactivity for Plutonium Core of Pebbled Bed Reactor;Zuhair;Journal of Physics: Conference Series,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3