A directivity correction for accurate semi-empirical wind turbine noise prediction

Author:

Saldaña O,Rautmann C,Plaza A

Abstract

Abstract Public acceptance of wind farms is a significant challenge in the development of wind energy. The acoustic impact generated by wind turbines is a common concern among local residents. The primary noise source in wind turbines is generated by aerodynamics. Atmospheric turbulence reaching the blade leading edge or turbulent boundary layer passing the trailing edge produce the main aeroacoustic sources. The noise generated by these mechanisms is commonly predicted by means of semi-empirical models, which do not demonstrate great reliability when compared to acoustic measurements. This paper presents a correction to the directivity of airfoil noise radiation, resulting in improved sound pressure levels on the ground plane surrounding a wind turbine. This improvement is achieved without requiring any additional computational effort. The sound pressure levels perceived on the ground plane are known to have asymmetrical shape. Maximum noise levels correspond to observers directly in the upwind and downwind locations, whereas the minimum levels belong to the positions close to the rotor plane. Said asymmetrical shape is not represented in the semi-empirical models. The proposed correction takes into consideration the airfoil thickness in the radiation directivity equations, resulting in the expected asymmetrical shape of noise footprints on the ground plane around a wind turbine. The correction was found to not affect the accuracy of the spectrum predicted by the semi-empirical models when compared to dedicated field measurements under the standard IEC 61400-11 procedure. When implementing the proposed correction, the virtual NREL 5 MW wind turbine’s published noise footprints, which were originally calculated using computationally expensive methods, are accurately reproduced.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3