Author:
Gaunaa Mac,Sørensen Niels N.,Li Ang
Abstract
Abstract
Design optimization and aeroelastic load evaluation for wind turbines are still infeasible for CFD due to computational cost. These tasks are carried out using 3D engineering aerodynamic methods, where the local aerodynamic loads are obtained from tabulated 2D aerodynamic polars, which makes the models fast. With recent developments such as highly flexible blades, coned/prebent/swept blades, the relative inflow direction to the “inner” 2D airfoil section systems can have a significant component in the spanwise direction. The Crossflow Principle (CP) is used to treat the effects of this in a physically consistent manner. Cases dominated by pressure forces are described well with the CP method, but it is shown in the paper that CP fails to describe the part of the forces stemming from the friction forces correctly. It is shown in the paper that the power loss due to friction forces will be underestimated with the crossflow principle for rotors with significantly swept blades or other designs with a significant amount of local crossflow on the blades. The present work presents a simple model to correct the baseline crossflow principle method to take into account also the friction force part in a consistent manner. The model is validated with 3D CFD results on a 2D airfoil section. It is shown that the new model successfully corrects for the addition of the viscous forces due to spanwise flow component. The paper includes examples of the effect of using the model on rotor designs with different amounts of blade sweep simulated using a blade element momentum (BEM) and blade element vortex cylinder (BEVC) methods.