Transferability of Operational Status Classification Models Among Different Wind Turbine Types

Author:

Trstanova Z.,Martinsson A.,Matthews C.,Jimenez S.,Leimkuhler B.,Van Delft T.,Wilkinson M.

Abstract

Abstract A detailed understanding of wind turbine performance status classification can improve operations and maintenance in the wind energy industry. Due to different engineering properties of wind turbines, the standard supervised learning models used for classification do not generalize across data sets obtained from different wind sites. We propose two methods to deal with the transferability of the trained models: first, data normalization in the form of power curve alignment, and second, a robust method based on convolutional neural networks and feature-space extension. We demonstrate the success of our methods on real-world data sets with industrial applications.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Tensorflow: a system for large-scale machine learning;Abadi;OSDI,2016

2. Using machine learning to predict wind turbine power output;Clifton,2013

3. Wind turbine condition assessment through power curve copula modeling;Gill;IEEE Trans. Sustain. Energy,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3