Enhanced modelling of the stratified atmospheric boundary layer over steep terrain for wind resource assessment

Author:

Flores-Maradiaga A,Benoit R,Masson C

Abstract

Abstract The Mesoscale Compressible Community (MC2) model [1], devoted for weather forecasting and used in the Wind Energy Simulation Toolkit (WEST) [2], performs well for simulations over flat, gentle and moderate terrain slopes but is subject to numerical instability and strong spurious flows in presence of steep topography. To remove its inherent computational mode and reduce the wind overestimation due to terrain-induced numerical noise, a new semi-implicit (N-SI) scheme [3] was implemented to discretize and linearize the non-hydrostatic Euler equations with respect the mean values of pressure and temperature instead of arbitrary reference state values, redefining as well the buoyancy to use it as the thermodynamic prognostic variable. Additionally, the climate-state classification of the statistical-dynamical downscaling (SDD) method [4] is upgraded by including the Brunt-Väisälä frequency that accounts for the atmospheric thermal stratification effect on wind flow over topography. The present study provides a real orographic flow validation of these numerical enhancements in MC2, assessing their individual and combined contribution for an improved initialization and calculation of the surface wind in presence of high-impact terrain. By statistically comparing the wind simulations with met-mast data, obtained within the Whitehorse area of the Canadian Rocky Mountains, it is confirmed that these numerical enhancements may reduce over 40 percent of the wind overestimation, thus, attaining more accurate results that ensure reliable wind resource assessments over complex terrain.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference21 articles.

1. Finescale topography and the MC2 dynamics kernel;Girard;Monthly Weather Review,2005

2. Wind Energy Simulation Toolkit (WEST): A Wind Mapping System for Use by the Wind Energy Industry;Yu;Wind Engineering,2006

3. Enhanced Method for Multiscale Wind Simulations over Complex Terrain for Wind Resource Assessment;Flores-Maradiaga;Journal of Physics: Conf. Series,2016

4. A Comparison of Wind Flow Models for Wind Resource Assessment in Wind Energy Applications;Gasset;Energies,2012

5. Implementing Large-eddy Simulation Capability in a Compressible Mesoscale Model;Gasset;Monthly Weather Review,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3