Author:
Du Linlin,Tang Hao,Li Pengfei,Ma Tao,Ge Shuangquan,Cao Kang
Abstract
Abstract
Navigating in an unknown area safely is counted as the underlying work which can support swarm agents for more complex tasks. When available information of search regions are lacking, agents make real-time action decisions according to surrounding environments they have perceived. For swarm agent system, connectivity maintenance and collision avoidance are both essential. Based on optimal Reciprocal Collision Avoidance (ORCA) algorithm, we proposed a method that agents can provide assistances to surrounding agents by spreading the status information of themselves, which is the neighbor reward method (NRM). This kind of status information contains ambient information and perceptions of the task which are transferred to reward data for convenient and uniform distributions. In other words, individuals utilize inter-neighbor interactions to achieve the same high-level goal, as well as result in an intelligent independent swarm agents system.
This method solves the velocity selection problem of ORCA and optimizes the obstacle avoidance of the original NRM. The algorithm has been integrated in ROS framework and simulated on GAZEBO. In the tested scenario, our method is efficient for swarm agents collision avoidance in decentralized way.
Subject
General Physics and Astronomy
Reference24 articles.
1. An overview of swarm robotics: swarm intelligence applied to multi-robotics;Khaldi;International Journal of Computer Applications,2015
2. Flocks, herds and schools: a distributed behavior model;Reynolds;Proc. SIGGRAPH’87,1987
3. Flocking for multi-agent dynamic systems: algorithms and theory;Olfati-Saber;IEEE Transactions on Automatic Control,2006
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extending the Target-Search Algorithm for Kilobots by Adding Random Walk Behavior;2023 9th International Conference on Automation, Robotics and Applications (ICARA);2023-02-10