Experimental study of hydrodynamics and heat transfer in two-phase natural circulation loop with reference passive cooling systems of nuclear power plants

Author:

Kabankov O N,Sukomel L A,Yagov V V,Zubov N O

Abstract

Abstract In spite of long year practical use of natural circulation systems and not less long period of study working characteristics of these systems the problem of reliable predicting calculations of natural circulation loops (NCL) with boiling coolant at low reduced pressures is not likely can be considered as being solved. At the same time the interest to solution of this problem arises today, because low pressure natural circulation loops are considered as main type of post accident passive cooling systems for nuclear power plants. The main difficulties for calculations are concerned with determining friction pressure losses, which are strongly depended on two-phase flow pattern. At low reduced pressures large difference between liquid and vapour (gas) specific volumes predetermines the strong change of flow pattern even at small change of mass flow quality. An attempts to calculate local two-phase flow parameters (void fraction, circulation velocity) in the wide range of mass flow qualities without considering the change of flow patterns often lead to large deviations of calculated values from the results of experimental measurements. Another specific feature of two-phase low pressure NCL is hydrodynamic flow instability with circulation velocity pulsations of high amplitude and the occurrence of reverse flows. This also presents problems in developing calculation method. In present paper a method for calculating a low-pressure NCL has been developed, in which local two-phase flow parameters (void fraction, the phases velocities, pressure) are calculated using a modified homogeneous model with taking into account the distribution factor and the phases slip and a model of an annular-dispersed flow with considering droplets entrainment and deposition. A modified homogeneous model was applied for description quasihomogeneous flow regimes. At high values of void fraction annular-dispersed flow model was used. Recommendations for change from one model to another in practical calculations have been formulated and verified. The proposed calculation method has been verified by the comparison the calculated thermo-hydraulic characteristics of laboratory natural circulation loop with the experimental data. The experiments have been carried out for boiling in the loop of three different liquids – water, ethanol and perfluorohexane (FC-72) at atmospheric pressure. The comparison of calculated and experimental results showed their good agreement.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference15 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3