Optimal tuning and assessment of non-grounded regenerative tuned mass damper inerter (RE-TMDI) configurations for concurrent motion control and energy harvesting

Author:

Rajana K,Giaralis A

Abstract

Abstract This paper addresses the optimal tuning and numerical performance assessment of regenerative tuned mass damper inerters (RE-TMDIs) in three different configurations with non-grounded inerters attached to cantilevered primary structures under Gaussian white noise base excitation. The studied RE-TMDI configurations behave linearly and differ in the placement of the electromagnetic motor (EM), modelled as viscous damping element used for transforming kinetic energy to electricity, with respect to the inerter element. The primary structure is modelled as a linear damped generalized single-degree-of-freedom system, while a connectivity index is used to account for the location of the two RE-TMDI attachment points to the primary structure. A bi-objective optimization problem formulation is adopted and numerically solved for determining optimal RE-TMDI stiffness and EM damping coefficients that minimize primary structure displacement variance and maximize the available energy for harvesting by the EM. Parametric numerical results are reported for different RE-TMDI configurations, connectivity, inertance, secondary mass ratio and relative weighting between the two optimal design objectives. These results demonstrate that improved energy generation and vibration suppression is concurrently achieved with increasing inertance and/or increasing the distance of the host structure locations where the RE-TMDI is attached to. Recommendations are provided establishing the most advantageous RE-TMDI configuration.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3