Detection of quasi-harmonic signals with a priori unknown parameters in strong additive noise by machine learning methods

Author:

Nevzorov A A,Orlov A A,Stankevich D A

Abstract

Abstract Signals with a priori unknown parameters in strong noise are used in various fields of science and technology. This paper is devoted by features and limits deep neural networks for signal detection. We study quasi-harmonic signals with a priori unknown parameters. Neural network method was compared with classical methods for detecting signals in terms of accuracy and speed. We use realistic models of hexogen nuclear quadruple resonance (NQR) signals with parameters dependence by temperature. Experiments show that proposed method is more accurate and one hundred times faster than alternative ones. We achieve a probability of NQR signal detection about 95%, when signal-to-noise ratio is -15 dB and the signal parameters are unknown. When the signal-to-noise ratio is -20 dB, probability of NQR signal detection is 80%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3