Text Categorization with Fractional Gradient Descent Support Vector Machine

Author:

Hapsari Dian Puspita,Utoyo Imam,Purnami Santi Wulan

Abstract

Abstract Text documents on the web are an incredible resource including one example of big data, large size and so many variations that it becomes difficult for humans to choose meaningful information without the help of a computer. Text categorization job is to automatically classify text documents into standards class based on their content. The objective of this research is to implement a classifier with optimization based on the Fractional Gradient Descent in text classification. In our research, we propose using the Fractional Gradient Descent to optimize the SVM classifier so that it can increase the speed of training data. We explore a batch of different training data to compare the speed of the UCI ML text dataset training process with the SVM- SGD and SVM-FGD classifiers. This research concludes that using SVM-FGD will optimize the training time for text dataset in the activity of data classification.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Algorithms;Encyclopedia of Data Science and Machine Learning;2022-10-14

2. Servicio de clasificación documental multi cliente basado en técnicas de aprendizaje de máquina y Elasticsearch;Revista Científica;2021-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3